If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120p-4p^2=0
a = -4; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·(-4)·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*-4}=\frac{-240}{-8} =+30 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*-4}=\frac{0}{-8} =0 $
| 6+3(y-4)=16 | | -3(-4a-10)=90 | | 6(2x-5)=-x+-4 | | -27=(2h-7)(-3) | | 6x-22=3/ | | 67+2(2X)(x=4) | | (2*x-7)^2=25 | | 5(x-2)+3=38 | | 2=16p+10 | | 3/4x+7=5/6 | | 6x=16-(-2) | | 2x(4x+5)=-2 | | 15+6c=57 | | 5(m+6)=54 | | .75b-8=3 | | 6.75x=20.25 | | 100=(3x+1)10 | | 4(u-1)=2(4u-2) | | -6(x+3)-15=17+4 | | 11.48=15t-4.9t^2 | | (y^2-5y-14)(3y+21)=0 | | 5(2m+6)=50 | | 12.5b=32 | | 9x-5x=124 | | 9x-5x=84 | | 12=6m+7 | | 35+40x=65+30x | | 8.034*n=80.34 | | 3+6b=27 | | 175=9.54x+624 | | 3(4x+1)=93 | | 10x-3x=2x-8x-44 |